Bewertung von Maßnahmen eines klimaresilienten Landschaftswasserhaushaltes durch hydrologische Modellierung

Prof. Dr.-Ing. Markus Disse

Lucas Alcamo, M. Sc. | Nicole Scherer, M. Sc. | Moritz Wirthensohn, M. Sc. | Niklas Keßel, M. Sc.

Technische Universität München

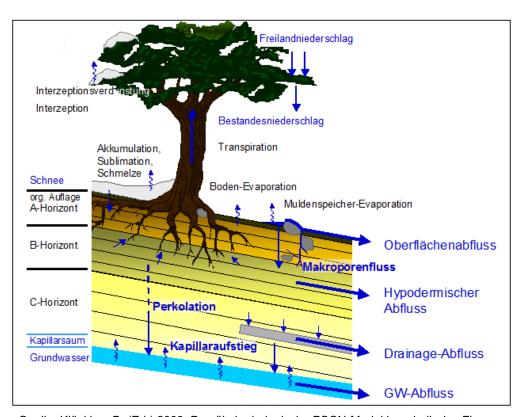
Lehrstuhl für Hydrologie und Flussgebietsmanagement

8. November 2024

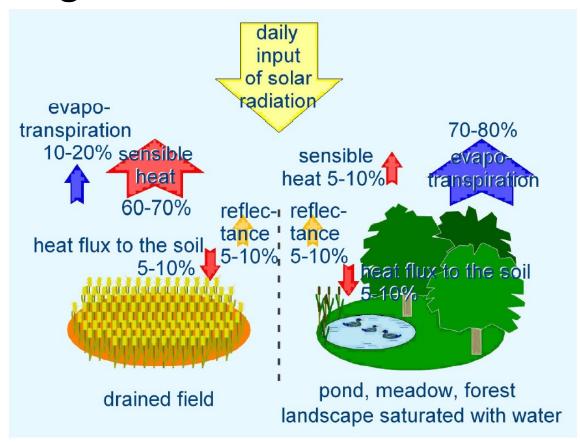
Universität Bayreuth, Wasserkontroversen IV: Wasserrückhalt in der Landschaft

Gliederung

- Einführung
- Projekt STUDIO
- Projekt AQUASOL
- Projekt Grüne Gräben+
- Projekt RETOUCH
- Fazit



Problemlage


- Klimawandel: längere Dürreperioden, stärkere Starkregen
- Landnutzung ↔ Landschaftswasserhaushalt
- Wasserableitung (noch) die Regel
- Homogenisierung der Landschaft: Resilienz ↓
- Folgen: Grundwasserstände ↓, landwirtschaftliche Erträge ↓, forstliche Vitalität ↓

Quelle: Klöcking, B. (Ed.) 2009. Das ökohydrologische PSCN-Modul innerhalb des Flussgebietsmodells ArcEGMO, 53 S., [online verfügbar: http://www.arcegmo.de/PSCN.pdf].

Ш

Veränderung des Landschaftswasserhaushaltes

(Aus: Water for the Recovery of the Climate - A New Water Paradigm, M. Kravcík, J. Pokorný, J. Kohutiar, M. Kovác, E. Tóth (2007))

Naturnahe Maßnahmen - Slovak Water Tour

Video: Nicole Tatjana Scherer.

Naturnahe Maßnahmen - Slovak Water Tour

Video: Nicole Tatjana Scherer.

Naturnahe Maßnahmen - Slovak Water Tour

Bild: Nicole Tatjana Scherer.

Naturnahe Maßnahmen

ПП

Welche Maßnahmen sind möglich?

Anpassung im Wegebau

Aufstauung von Rückegassen

Reisigmatten

Kleinräumige Versickerungsmulden

Ausrichten von Totholz entlang Hängen

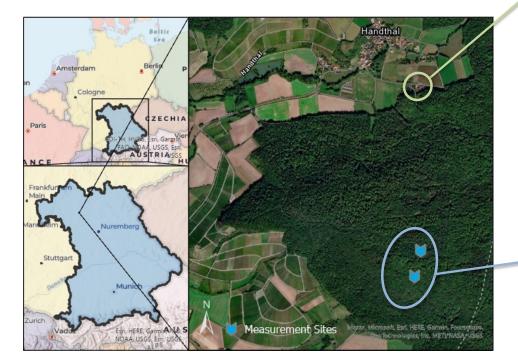
Naturnahe Maßnahmen

Wie kann die Effizienz dieser Maßnahmen ausgewertet werden?

→ Durch Feldmessungen ein besseres Verständnis der Infiltrationsprozesse bekommen.

→ Basierend auf den Feldmessungen mittels hydrodynamischer Modellierung die Maßnahmen für verschiedene Szenarien auswerten

Kleinräumige Versickerungsmulden



Ausrichten von Totholz entlang Hängen

Untersuchungsgebiet

"Steigerwald Zentrum"

Ziel:

- Infiltrationsprozesse im Untersuchungsgebiet besser verstehen
- Grundlage für die Modellierung schaffen

Vermessung

Meteorologische Messungen

Bodenfeuchte Messungen

Vermessung

Meteorologische Messungen

Bodenfeuchte Messungen

Drohnengestützte LiDAR-Vermessung

Wetterstationen

Niederschlagsmessungen Händische "HandiTRASE" Messungen Kontinulierlich-messende Bodenprofiele

Ausgewählte Ergebnisse

Ziel: Erhalt eines hochpräzisen DGM der Erdoberfläche im Wald, um kleinräumige Geländemodifikation zu untersuchen. (Flug durch eine externe Firma durchgeführt)

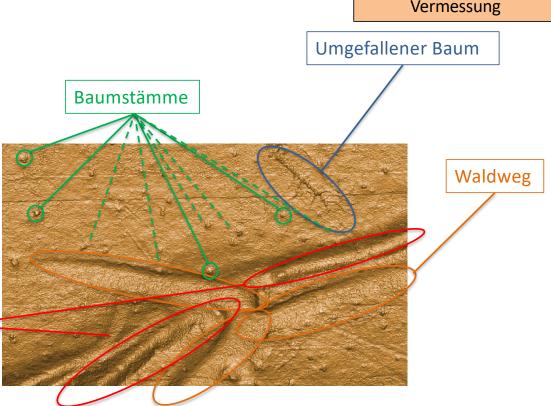
Ergebnis:

- 3D Scan des Untersuchungsgebiet.
- 10 cm DGM.

Ausgewählte Ergebnisse

Hoher Detailgrad!

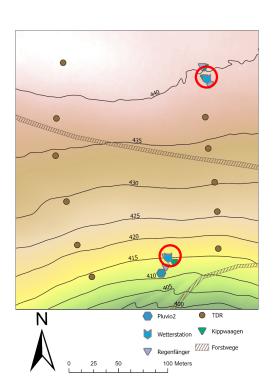
Vermessung

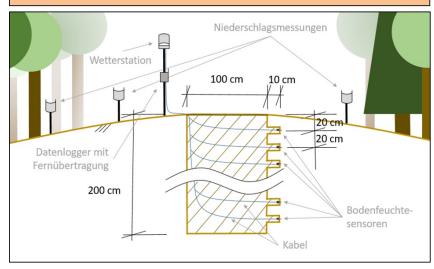

Drohnengestützte LiDAR-Vermessung

Ziel: Erhalt eines hochpräzisen DGM der Erdoberfläche im Wald, um kleinräumige Geländemodifikation zu untersuchen. (Flug durch eine externe Firma durchgeführt)

Ergebnis:

- 3D Scan des Untersuchungsgebiet.
- 10 cm DGM.


Gräben (alte Rückegassen)


Ausgewählte Ergebnisse

Bodenfeuchte Messungen

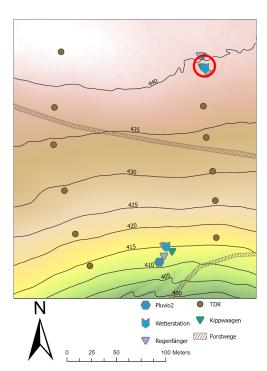
Händische "HandiTRASE" Messungen Kontinuierlich-messende Bodenprofile

Ziel: Zeitliche und räumlich-vertikale Beobachtung der Bodenwasserdynamik

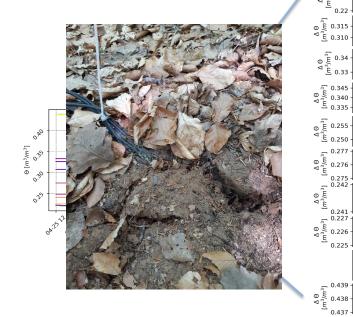
Ausgewählte Ergebnisse

Bodenfeuchte Messungen

Tiefe:


Händische "HandiTRASE" Messungen

0.345 0√€/_€ 0.340 0.335

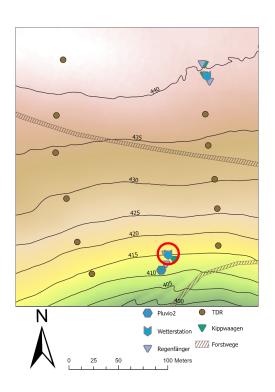

0.276

Keine Messdaten

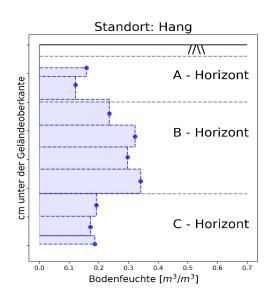
Kontinuierlich-messende Bodenprofile

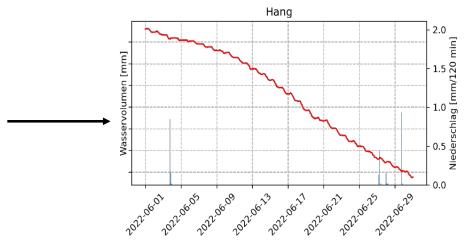
Infiltrationsgeschwindigkeit ≈ 21.81 cm/h

Infiltrationsgeschwindigkeit Sand = 11.78 cm/h(Rawls et al., 1983)


Ausreißer

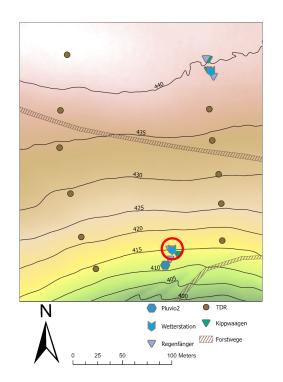
"Rauschen"

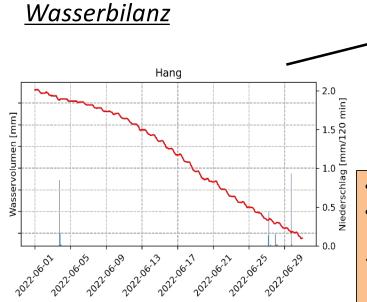

Ausgewählte Ergebnisse


Bodenfeuchte Messungen

Händische "HandiTRASE" Messungen Kontinuierlich-messende Bodenprofile

Wasserbilanz





Ausgewählte Ergebnisse

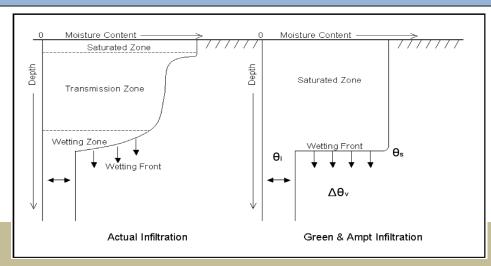
Bodenfeuchte Messungen

Händische "HandiTRASE" Messungen Kontinuierlich-messende Bodenprofile

- Tag/Nacht Rhythmus sichtbar
- Evaporation kann abgeschätzt werden
- → <u>Verlust des Wasservolumens + Niederschlagssumme</u>
 Anzahl der Tage

= 2.13 mm/Tag (Durchschnitt im Juni)

Hydrodynamische Modellierung - Modellwahl



Ziel (Erinnerung):

 Evaluierung der Effizienz der Maßnahmen im Bezug auf die Erhöhung der Infiltration

Wie:

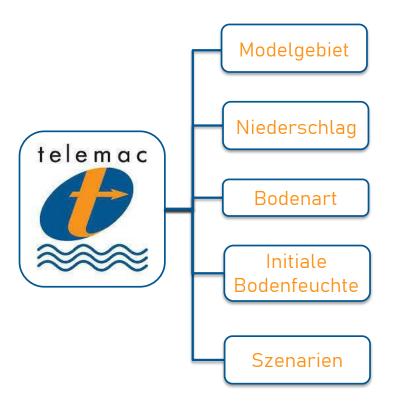
- Hydrodynamische Niederschlags-Abflussmodellierung, um Oberflächenabfluss im Untersuchungsgebiet zu untersuchen
- Infiltration muss berücksichtigt werden!

Maßnahmen:

Kleinräumige Versickerungsmulden

Ausrichten von Totholz entlang Hängen

TELEMAC as a hydrodynamic rainfall-runoff model: New extension using the Green-Amptinfiltration


Karl Broich, Thomas Obermaier, Lucas Alcamo, Markus Disse
karl.broich@tum.de, Munich, Germany
Chair of Hydrology and River Basin Management Munich. Technical University of Munich TUM, Munich, Germany

Modellwahl:

 TELEMAC 2D + Green & Ampt Infiltrations-Erweiterung (Broich et al., 2021)

ТИП

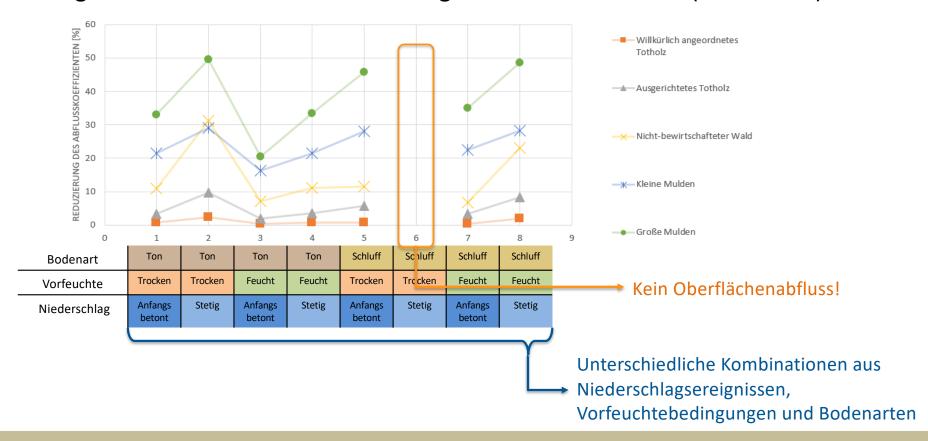
Hydrodynamische Modellierung – Modelaufbau

Sechs Topographieszenarien:

Ist-Zustand

Totholz:

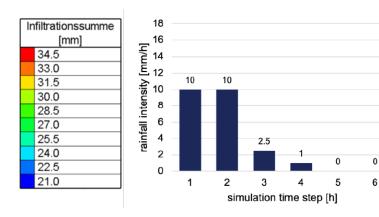
- Willkürlich angeordnet
- Senkrecht zum Gefälle ausgerichtet
- Nicht-bewirtschafteter Wald

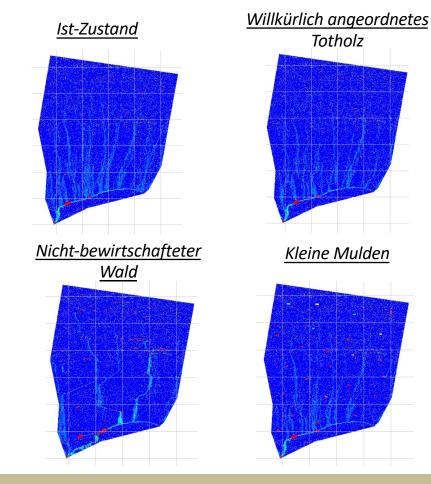

Mulden (14 m³)

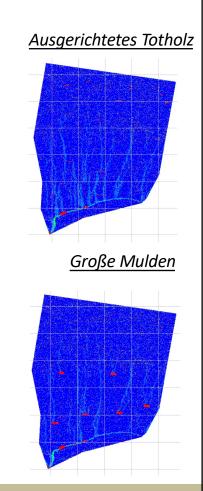
- Klein
- Groß

Hydrodynamische Modellierung – Ergebnisse

Reduzierung des Abflusskoeffizienten im Vergleich zum Ist-Zustand (0.0 - 0.231)

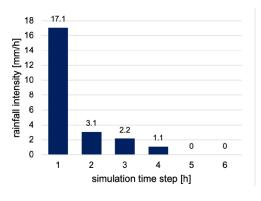

Hydrodynamische Modellierung – Ergebnisse

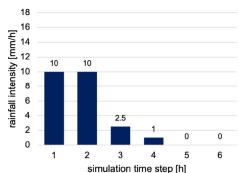

ПП


Infiltrationssumme

(Beispiel des Szenarios mit tonigen Boden, trockenem Vorfeuchtebedingungen und 120-minütigem Starkregen-Ereignis)

Größe des EZG: 1 ha





Hydrodynamische Modellierung – Ergebnisse

Retentionsvolumen

Szenario	Niederschlags- ereignis	θ _i [m³/m³]	Verbliebenes Wasservolumen [m³] Ton	Verbliebenes Wasservolumen [m³] Schluff
Willkürlich angeordnetes Totholz	1	0.1315	4.224	3.407
	2	0.1315	4.283	(1.704)
	1	0.2335	4.458	3.673
	2	0.2335	4.768	4.768
Angeordnetes Totholz	1	0.1315	4.866	3.936
	2	0.1315	4.832	(1.730)
	1	0.2335	5.220	4.263
	2	0.2335	5.458	4.665
Nicht- bewirtschafteter Wald	1	0.1315	7.438	5.918
	2	0.1315	6.614	(1.825)
	1	0.2335	8.185	6.687
	2	0.2335	8.134	6.699
Kleine Mulden	1	0.1315	10.380	6.338
	2	0.1315	6.146	(1.582)
	1	0.2335	12.670	9.608
	2	0.2335	10.926	6.750
Große Mulden	1	0.1315	14.208	8.503
	2	0.1315	7.808	(1.558)
	1	0.2335	14.984	13.394
	2	0.2335	14.877	8.995

Hydrodynamische Modellierung

Zusammenfassung

- ✓ Für alle Totholz und Muldenszenarien (in denen es zu Oberflächenabfluss kam) wurde der Abflusskoeffizient reduziert und die Infiltration erhöht.
- ✓ Mulden reduzieren den Abfluss effizienter als Totholz.
- ✓ Totholz führt zu einer flächigen Erhöhung der Infiltration.

AQUASOL

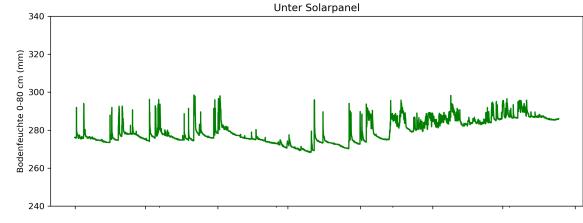
Verbesserte Grundwasserneubildung und Wasserqualität durch Solarparks

Solarpark Bundorf

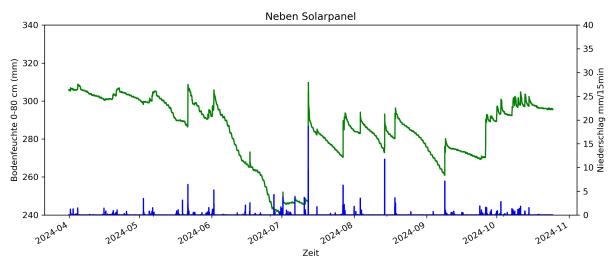
- Betreiber: MaxSolar
- Seit 2021 in Betrieb
- 125 ha → eine der größten Solarparks Bayerns
- 125 MW Leistung → 37.500 Haushalte
- Bundorf gilt als eine der trockensten Regionen
 Bayerns

Messaufbau

3 Messstationen:


- Wetterstationen
- Bodenfeuchtesensoren
- Evaporationsmessung
- Messungen seit Februar 2024

Messaufbau



Hydrodynamische Modellierung - Modellwahl

Ziel:

 Abschätzung des Einflusses von Solarpanels auf Infiltration und Oberflächenabfluss

Wie:

- Hydrodynamische Niederschlags-Abflussmodellierung, um Oberflächenabfluss im Untersuchungsgebiet zu untersuchen
- Neue Niederschlagsverteilung durch die Solarpanels
- Infiltration muss berücksichtigt werden, vor allem unter den Solarpanels

Modellwahl:

 TELEMAC 2D + Green & Ampt Infiltrations-Erweiterung mit neuem Ansatz

TELEMAC as a hydrodynamic rainfall-runoff model: New extension using the Green-Amptinfiltration

Karl Broich, Thomas Obermaier, Lucas Alcamo, Markus Disse
karl.broich@tum.de, Munich, Germany
Chair of Hydrology and River Basin Management Munich, Technical University of Munich TUM, Munich, Technical University of Munich

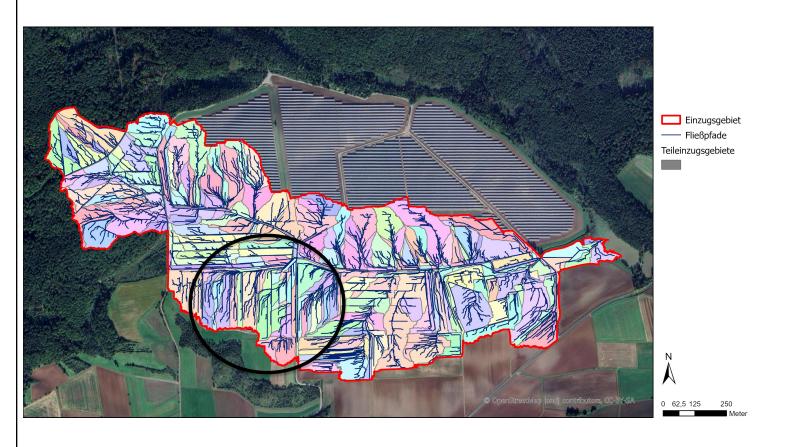
Revised Implementation of the Green-Ampt Infiltration Method in TELEMAC-2D

Leon Frederik De Vos¹, Karl Broich², Moritz Wirthensohn², Nils Rüther¹

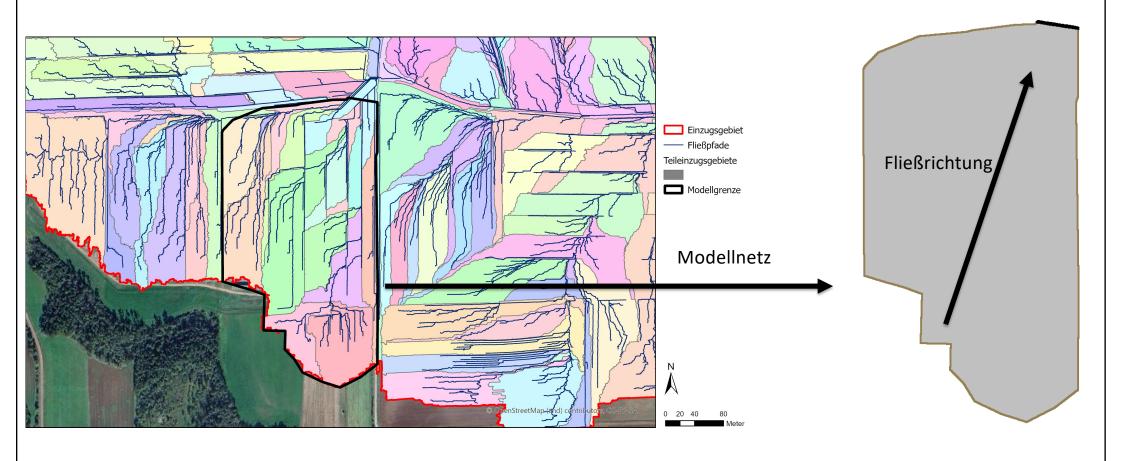
<u>Frederik de-vos@tum.de.</u> Munich, Germany

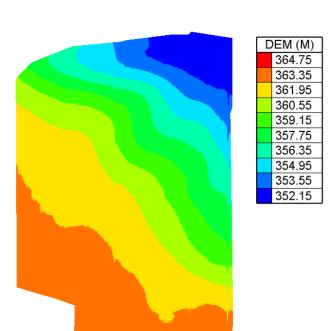
¹: TUM, Chair of Hydraulic Engineering

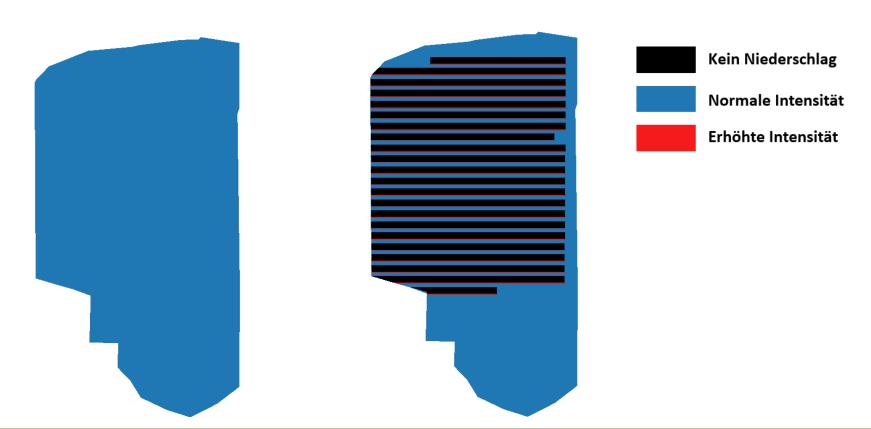
²: TUM, Chair of Hydrology and River Basin Management



T




ТИП



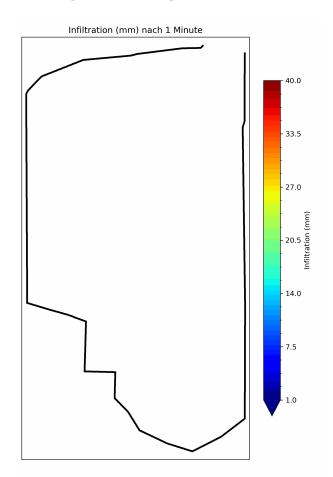
- 70300 m²
- Auflösung: 50 cm
- Freier Auslauf
- Strickler Beiwert: 25 m^{1/3}/s
- Gesättigte hydraulische Leitfähigkeit: 22.9 mm/h
- Anfangsfeuchte des Bodens: Trocken

Hydrodynamische Modellierung – Modellaufbau

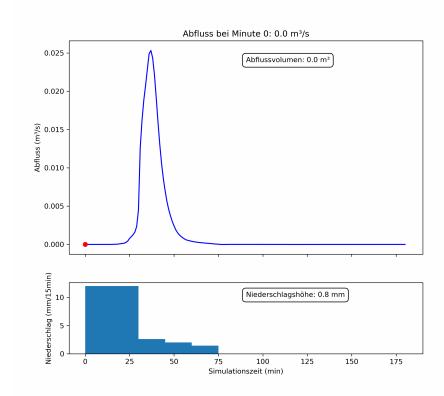
Niederschlagsverteilung ohne und mit Solarpanels

Hydrodynamische Modellierung – Szenarien

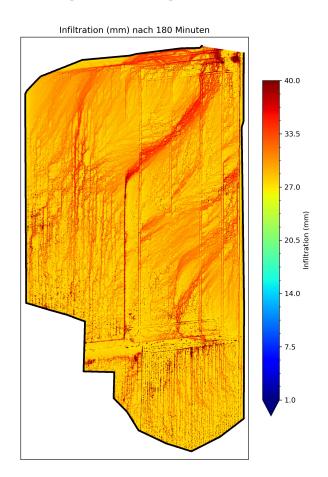
Niederschlag: KOSTRA 10 jährlich mit einer Dauer von 30 Minuten

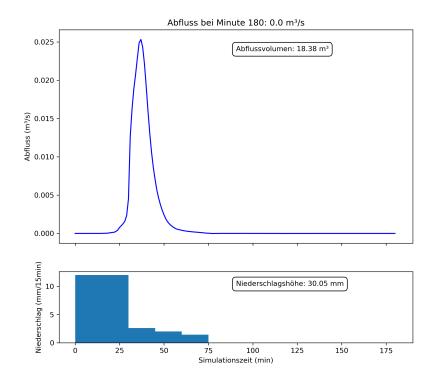

Szenario 1: Ohne Solarpanels

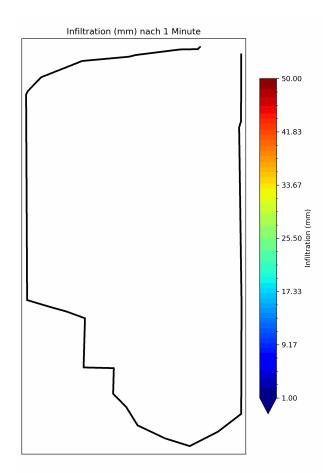
Szenario 2: Mit Solarpanels


Szenario 3: Mit Solarpanels und mit 4 eingebaute Mulden

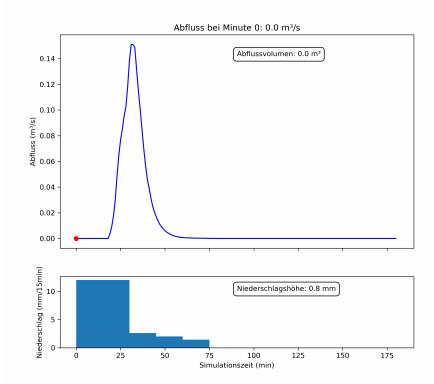
ТШП


Hydrodynamische Modellierung – Ergebnisse

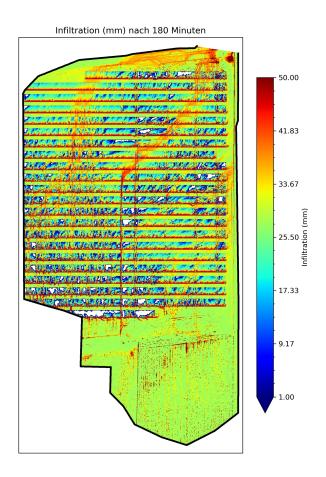

Ohne Solarpanels KOSTRA Niederschlag – 10 a, 30 Minuten

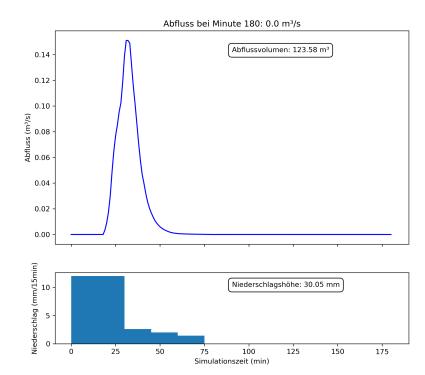


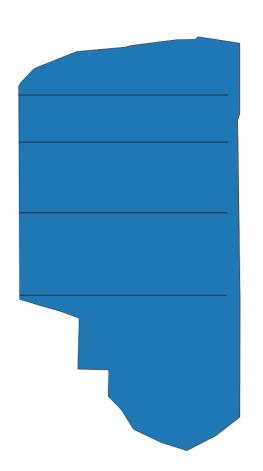
Ohne Solarpanels KOSTRA Niederschlag – 10 a, 30 Minuten



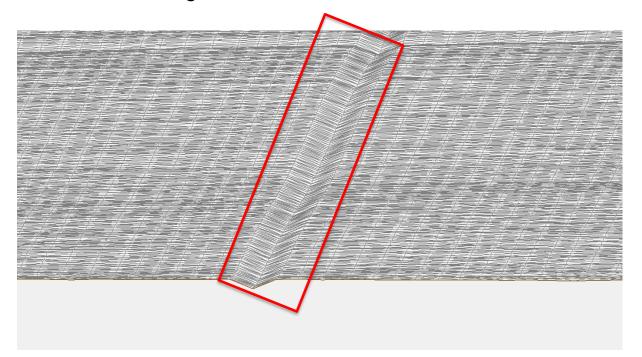
ТИП


Hydrodynamische Modellierung – Ergebnisse

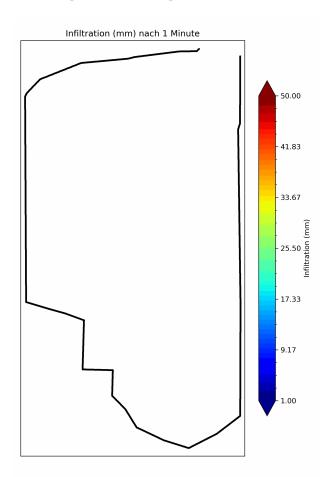

Mit Solarpanels KOSTRA Niederschlag – 10 a, 30 Minuten



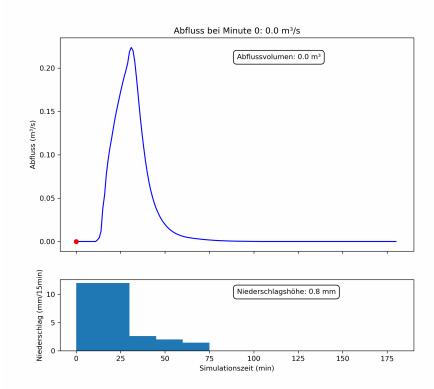
Mit Solarpanels KOSTRA Niederschlag – 10 a, 30 Minuten



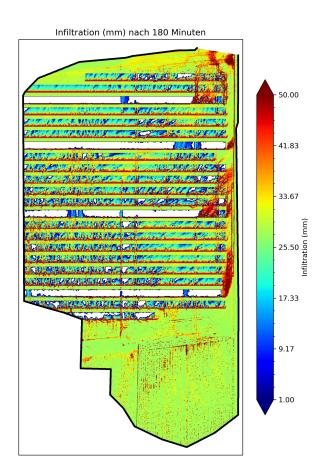
Hydrodynamische Modellierung – Mulden

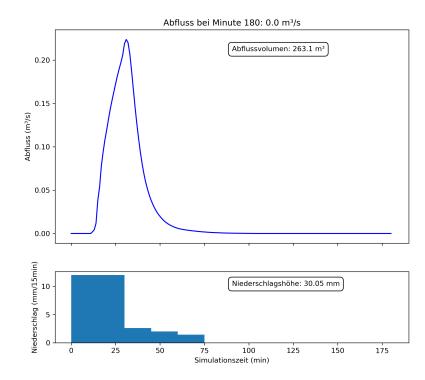


 Einbau von vier 20 cm tiefen Mulden an den Stellen, wo der Niederschlag von den Panels fließt



ТШП


Hydrodynamische Modellierung – Ergebnisse


Mit Solarpanels, mit Mulden KOSTRA Niederschlag – 10 a, 30 Minuten

Mit Solarpanels, mit Mulden KOSTRA Niederschlag – 10 a, 30 Minuten

Niederschlagsvolumen: $30.05 \text{ mm x } 70300 \text{ m}^2 = 2112.5 \text{ m}^3$

	Ohne Solarpanels		Mit Solarpanels, mit Mulden
Abflussvolumen m³	18.38 m³	123.58 m³	263.1 m ³
Abflusskoeffizient	0.0087	0.058	0.12

Mulden sollten angepasst werden, um eine Reduktion des Abflusses zu erreichen

Abschlusskolloquium AQUASOL

Dienstag, den 19. November 2024 von 13:00 bis 17:00 Uhr

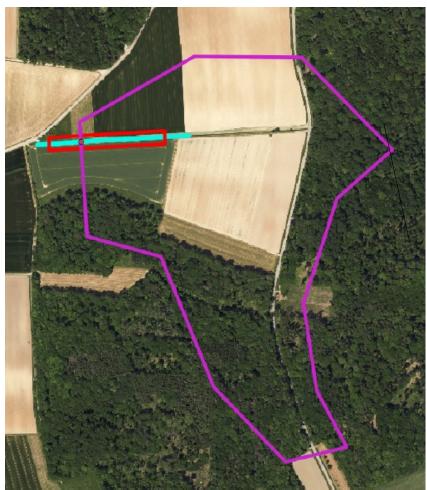
im Bayerischen Staatsministerium für Ernährung, Landwirtschaft, Forsten und Tourismus

- "Grüne Gräben" zumWasserrückhalt in derFläche
- Erarbeitung weiterer Maßnahmen mit Stakeholdern
- HydrologischeModellierungdurch die TU München

EUWID Wasser und Abwasser > News > Wirtschaft

Wasserzukunft: Kreis Neustadt a.d. Aisch-Bad Windsheim stellt sich klimaresilient auf

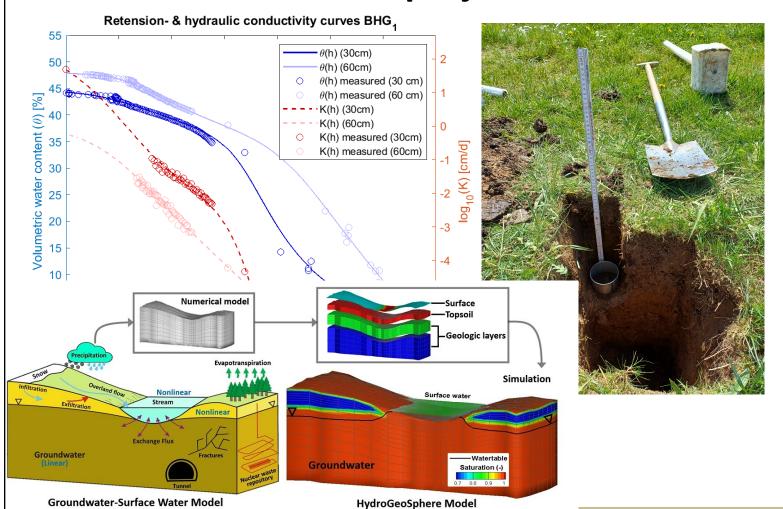
Glauber: Kreis zu Freiluftlabor für die Klimaanpassung geworden


♣ EUWID + 11.04.2024 | Michaela Plazzo | • ca. 4 Min | Erschienen in Ausgabe 18/2024

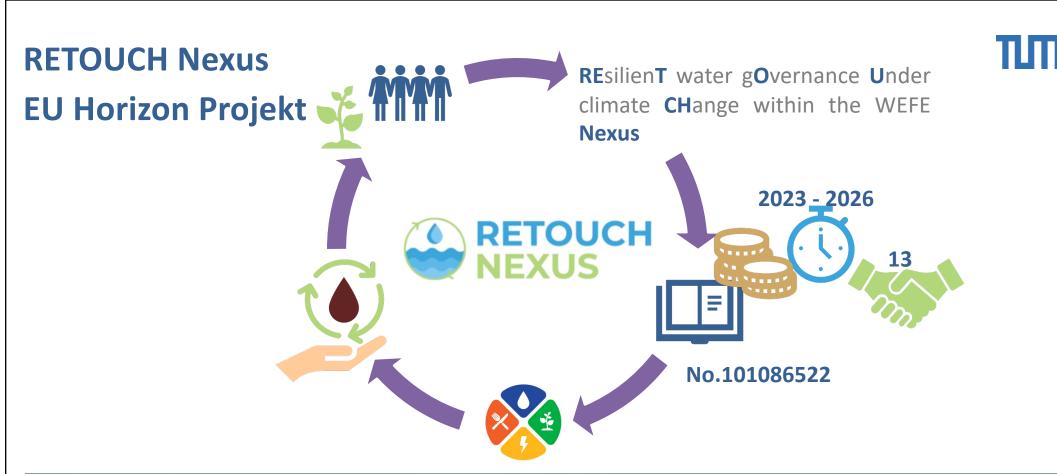
- Geologische Haupteinheit: Löß/Lößlehm
- · Staulänge: ca. 100 m
- Stauvolumen: ca. 56 m³
- Stauhöhe: ca. 0,75 m
- Einzugsgebiet: ca. 0,17 km²
- Geologische Haupteinheit: Gipskeuper
- Staulänge: ca. 36 m
- Stauvolumen: ca. 10 m³
- · Stauhöhe: ca. 0,6 m
- Einzugsgebiet: ca. 1,88 km²
- Geologische Haupteinheit Gipskeuper
- Staulänge: ca. 65 m
- Stauvolumen: ca. 19 m³
- · Stauhöhe: ca. 0,55 m
- Einzugsgebiet: ca. 0,34 km²

ПЛ

- "Grüne Gräben" zumWasserrückhalt in der Fläche
- Erarbeitung weiterer Maßnahmen mit Stakeholdern
- HydrologischeModellierungdurch die TU München



- "Grüne Gräben" zumWasserrückhalt in derFläche
- Erarbeitung weiterer Maßnahmen mit Stakeholdern
- HydrologischeModellierungdurch die TU München



Integrated Water Resources & HydroGeoSphere

RETOUCH Nexus

Ziel RETOUCH NEXUS:

- robuste,
- Integrative,
- nachhaltige und
- skalierbare

Wasserbewirtschaftungspraktiken

Evidenzbasierter Ansatz

6 Fallstudien innerhalb der EU

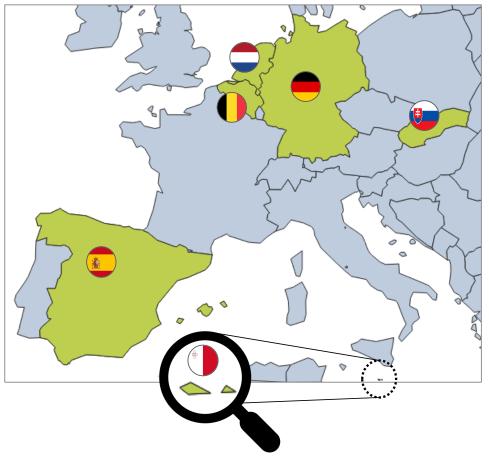
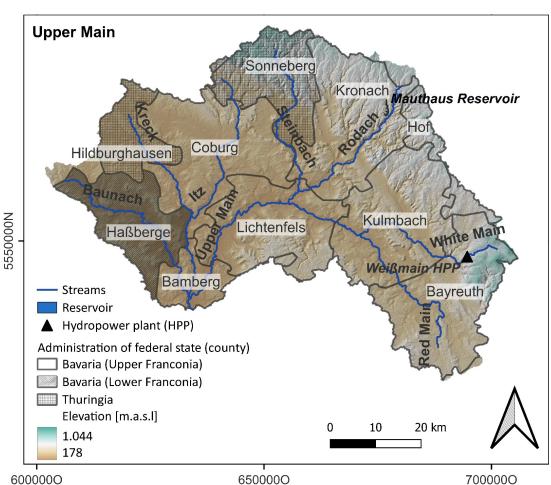



Abbildung1: Lage der Fallstudien des RETOUCH Nexus Projektes

Fallstudie des Oberen Main

EZG-Größe: 4.646 km²

Höhenlage:

- Ost-West-Gefälle
- [178, 1044] müNN
- ~ 75% in niederigeren Lagen
 [178,500] müNN

Gewässernetz:

- Zwei Quellen:
 - Weißer Main
 - Roter Main
- Weitere Nebenflüsse
- Mauthaus Talsperre
- Weißmain-Kraftwerk

Abbildung 3: Lage des Oberen Maingebiets.

Neue Herausforderungen

Klima Sozioökonomie resiliente Anpassung

Sektorübergreifender Dialog

Modell Toolbox

(Dynamische) Landnutzungsänderungen

- Ent- bzw. Wiederbewaldung
- Urbanisierung
- Moorrenaturierung
- Fruchtfolgen
- Düngemittel- und Pestizid-Einsatz

Bodenerosion
Überschwemmungsgefahr
Wassermangel
Bodenwassergehalt
Einfluss auf Ernte und Ökosysteme

Naturbasierte Lösungen

- Wiederbewaldung
- Moorrenatuierung
- Regenrückhaltebecken
- Angepasste Bodennutzung
- Filter- / Pufferstreifen
- Angepasste Kulturen
- Bodenbearbeitung

Dürre- und Hochwasserschutz
Erosionsschutz
Nährstoffrückhalt
Resilienz vor Effizienz

WaterEnergyFoodEcosystem (WEFE) - Indikatoren

- Wasserdargebot
- Blaues Wasser
- Grünes Wasser

Wasser

Energie

- Wasserdargebot
- Biomasse (Biokraftstoffe)
- Erosion/Sedimentation (Wasserkraftwerke)

Ernährung

Ökosystem

- Kohlenstoffbindung
- N
- P
- Gelöster Sauerstoff
- Temperatur
- Q

Ernteerträge

- Aussaatflächen
- Ackerlandflächen

Quelle: https://swat.tamu.eu/media/69395/ch32 output.pdf

Einbindung von Interessensvertretern

Abbildung 7: Erstes Stakeholder Treffen mit der Regierung Oberfranken im Juni 2024.

Fazit

 Speicherfähigkeit der bayerischen Landschaft wiederherstellen (bodenschonende Bearbeitungsmethoden, Wasserrückhaltemaßnahmen, Oberflächenwasser lenken und leiten)

 Hydrodynamische Niederschlags-Abflussmodellierung mit gekoppeltem Infiltrationsmodell ist geeignet für die Auswertung der Maßnahmen.

- Messen, Modellieren, Monitoren (intelligente Modellwahl notwendig)
- Dezentrale Speicherbecken und Grüne Gräben als kombinierte Maßnahme für Dürre- und Hochwasserschutz (Starkregen).

- Hochwasser, Dürre, Ökosystemfunktionen und Ökonomie systemisch denken!
- Resilienz vor Effizienz, naturbasierte Maßnahmen bevorzugen.

